
J .  Fluid Mech. (1975), vol. 68, part 1, pp.  177-189 

Printed in Great Britain 
177 

Stability of non-planar shear flow 
of a stratified fluid 

By WILLIAM BLUMEN 
Department of Astro-Geophysics, University of Colorado, Boulder 

(Received 12 November 1973) 

The linear stability of non-planar shear flow of a stably stratified fluid is investi- 
gated. Howard’s (1961) semicircle theorem, which places bounds on the range of 
the complex phase speed c, is derived, although sufficient conditions for stability 
of the (x-directed) basic flow U(y, z )  have not been established. The stability 
properties of some particular shear-layer and jet flows for long-wave disturbances 
are examined. Much of the effort is directed to delineation of unstable properties 
of the flow U(y,  x )  = tanh y tanh z in terms of c, the wavenumber a and a local 
form J, of the Richardson number. Limiting cases are inflexion-point instability 
(J, = 00) and two-dimensional instability of a vertically stratified shear flow 
(J, < 4). The present numerical computations reveal that a t  least two modes of 
instability are present for each pair of values of a and J ,  for a < 0-2 and 
Jo < 4. The source of instability for each mode is examined by means of 
computed energy transformations. However, numerical difficulties prevent a 
detailed examination of these unstable modes for a > 0.2. 

1. Introduction 
The stability of non-planar parallel shear flow of a stratified fluid is not without 

interest in the fields of meteorology and oceanography. Although much has been 
learned about the stability properties of atmospheric and oceanic flows from 
theoretical and laboratory models of plane parallel shear flows, most geophysical 
flows are non-planar even to a first approximation. The relative success of 
modelling geophysical flows by planar representations is generally related to the 
fact that the principal energy source for disturbance growth resides in the basic 
shear associated with either the vertical or the horizontal direction. 

Pedlosky (1964a, b )  bas examined the stability of a non-planar shear flow to 
quasi-geostrophic wave disturbances. However, little is known about the 
stability of non-planar parallel flow of a stratified fluid when quasi-geostrophic 
theory is inapplicable, as is the case, for example, in the vicinity of intense jet 
streams. The principal difficulties are both analytical and numerical. First, some 
stability theorems developed for homogeneous shear flow cannot be directly 
applied and, second, the numerical problem reduces to finding the eigenvalues 
of a partial differential equation with non-constant coefficients. In the latter 
circumstance, the numerical analysis and computer capabilities lead to more 
serious difficulties than are usually met in the eigenvalue problem associated with 
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planar shear flow or the problem posed by quasi-geostrophic disturbances in 
non-planar flow. 

In  the present paper, only linear stability properties of non-planar parallel 
flows of a hydrostatic and non-rotating fluid will be investigated. The restriction 
to long-wave perturbations overcomes certain analytical and numerical d i e -  
culties and makes it possible to determine some quantitative features of the 
instability associated with the non-planar character of the basic flow. Although 
this restriction limits the geophysical application of the results, the present work 
does provide a foundation for extensions to the non-hydrostatic problem. 

Section 2 contains the basic equations and a presentation of some analytical 
results. In  $ 3  neutral curves for various shear profiles are presented while some 
unstable eigenvalues and associated energy transformations appear in 3 4. Some 
final remarks are made in § 5. The interested reader will find in the appendix a 
brief discussion of t,he numerical techniques employed. 

2. Formulation and theory 
Theoretical and numerical results derived from the present model represent 

an extension of an analysis presented earlier (Blumen 197 1 b, hereafter referred 
to as I ) .  A Boussinesq model is employed in which the basic state is a non-planar 
steady parallel flow ii(y*,z*) directed along the x* axis. I n  a Cartesian frame, 
x* and y* are directed to the east and north respect,ively, while z* is the height. 
A basic state of hydrostatic balance prevails. The perturbation velocity super- 
posed upon this state is ( u s ,  v*, w*). The thermodynamic variables are the 
pressure p* ,  density p* and temperature T*. t* denotes time. 

A velocity scale U and length scales L and H, characteristic of the amplitude 
and the horizontal and vertical variation of the basic zonal shear flow, are 
introduced for the purpose of non-dimensionalization. As a consequence we take 

( 1 )  I (x*,Y*) = L(x,Y),  Z* = Hz, t* = Lt /U,  

(U*, u*, v*, w*) = U(G, U, V, HwIL), 
p*lp* = U2n, T*IT* = U20/gH, 

where g is the acceleration due to gravity, assumed constant. The non- 
dimensional linearized perturbation equations for momentum, mass and energy 
may be expressed as 

(2) ut + uu, + vu, + wu, = - n,, 

II' (3) v,+uv, = -7r 

S2(ui, + UW,) = - na + 0, (4) 

u, + vy + Wa = 0, ( 5 )  

et + ue, + JtO = 0. (6) 
The aspect ratio is 

and 

S = H / L  (7)  
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where ya denotes the adiabatic lapse rate and y = - dT*/dz  is t’he mean tempera- 
ture lapse rate. (For an incompressible fluid, the form of (3)-(6) remains intact, 
but 8 cc p*/p* and J ( z )  = ( - gd Inp*/dz)/( U / H ) 2 . )  The parameter J ( z )  has been 
referred to as the local Richardson number (e.g. by Drazin & Howard 1966) 
although the square of the local vertical shear does not appear in the denominator. 
An alternative definition could be made in terms of the internal Froude number 
J - f  but the present form is convenient for later use. 

The stability equation for the hydrostatic form of (4) has been derived in I .  
The stability equation for non-hydrostatic modes takes the form 

[(U-C)-’ 7 ? y ] y - ~ 2 ( ? ; ( U - ~ ) - 2 + [ ( J -  (a8)2(U-~)2)-17?,] , )  = 0, (9) 

where n = ;(y, z )  eia(z-ct), (10) 

a denotes the x wavenumber, assumed positive, and the phase speed c = c, + ici is 
complex. Instability is associated with exponential growth at a relative rate a ~ . ~ .  
Hereafter, the carets will be omitted. 

At a rigid boundary the normal velocity component vanishes; a t  infinity all 
perturbations are required to  vanish. As a consequence of (3), (4) and (6) we 
obtain 

my = 0, y = y1,y2, (11 a)  

71, = 0, z = x1,z2. ( l i b )  

Semicircle theorem 
I n  I ,  the normal-mode approach was used to derive Howard’s (1961) semicircle 
theorem for J = constant. The extension to variable J or to non-hydrostatic 
modes requires no extra effort when the stability equation is expressed as in (9). 
Multiplication by n*, the complex conjugate of n, followed by integration and 
use of (1 1) leads to 

Howard‘s (1961) semicircle theorem follows directly from (12). This theorem 
states that, when J 2 0 in the field of flow, “the complex eigenvalue c for any 
unstable mode must lie inside the semicircle in the upper half-plane which has 
the range of U for diameter ”. 

Static instability 
Drazin & Howard (1966, p. 62) established that if the atmosphere is statically 
unstable everywhere ( J  < 0) then any vertical shear flow U ( z )  will be unstable. 
The form of (12) is identical with that of equation (5.9) in the paper by Drazin & 
Howard. It thus follows that the above result may be established for the present 
case by a similar analysis. Consequently, static instability will always occur in 
a non-planar shear flow U(y ,  z ) .  

12-2 
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Neutral modes 

The two results established above are quite general, applying to arbitrary J ( z )  
and U(y, z ) .  However, we shall now restrict attention to long waves for which the 
wavelength h is comparable with the horizontal length scale L and the square of 
the aspect ratio (7) satisfies lI2 4 1. This long-wave approximation implies that 
h -too with L such that the non-dimensional wavenumber a: remains finite. Con- 
sistent with this interpretation, we set 6 = 0 in (9) and retain the normal-mode 
expression (10). We consider only profiles of the type 

(13) 

and seek stationary neutral solutions (c,+ici = 0) .  Then, as shown in I, the 
solution of (9) is separable and may be expressed as 

U(Y, 2) = g ( z )  M Y )  

n ( y , z )  = n(Y)p(z) .  (14) 

In  the present case, where J = J ( z ) ,  the stability equation gives 

g2[P“- (J‘IJ) P‘] + J(P2/a2)  P = 0, 

hn”-2h’n’-a2h[l-(P2/a:~)h2] II = 0, 

where P2 is the separation constant. The basic reason for introducing the above 
simplification is to take advantage of the separability property: the more general 
form of the stability equation (9) does not appear to be separable. 

Neutral solutions associated with four different flows will be presented. In 
all cases 

where J, = Jo(a, ci = 0) defines the neutral-stability curve in the a, J, plane. In 
addition, some attendant instability properties of the flow represented by case 1 
below will be delineated. 

J ( z )  = J, sech2z, (17) 

3. Neutral solutions 
Case 1. ii = tanh y tanhz 

Michalke (1964) has established that the homogeneous shear flow h(y) = tanh y 
in IyI < 00 is unstable to stationary (c, = 0) modes in the wavenumber range 
0 < a: < I. These modes are bounded by the neutral mode a = 1, c, = ci = 0. 
The stability of the flow g ( z )  = tanhz with J ( z )  given by (17), in IzI < co, has been 
examined by Holmboe (Miles 1963). The neutral curve Jo = a ( 1  -a) ,  shown in 
figure I, represents a stability boundary. Stationary (c, = 0) non-hydrostatic 
disturbances are unstable in the region below this curve. Hazel (1969, 1972) has 
further established that, as the boundaries are moved in from infinity, the longer 
wavelengths are destabilized if 00 > ]HI 2 1-2, where 2 H  represents the boundary 
separation. A few curves reproduced from Hazel’s (1969) numerical results are 
also presented in figure I. The neutral points J, = a2 < 4 on the Jo axis correspond 
to the case 6 = 0, h ( y )  = 1 in the present model. In  this case unstable stationary 
disturbances are found in the range 0 < J, < a2. An interpretation of the 
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FIGURE 1. Neutral-stability curves for E(z )  = tanhz, J = J,,sech2z. Each curve is associ- 
ated with rigid boundaries placed at the indicated distances, z = IH/ . The unstable region 
is below each curve. 

destabilizing effect of the boundaries for long-wave disturbances may be found 
in Hazel's papers. We now wish to examine the stability properties of the flow 
ii = tanh y tanh z of a stratified fluid in which J ( z )  is given by (17). The previously 
established results due to Michalke and Hazel will provide useful limiting cases. 

We first determine some neutral-stability characteristics by solving (15) and 
(16). Equation (16) has been solved by Blumen (1970) for h = tanh y .  The solu- 
tion is II = sechr y ,  

where y = a2 for this case and the separation constant satisfies 
(18) 

(/3/a)2 = 1 -a2. (19) 

Hereafter, it  will prove more convenient to deal with the equation 

where the relationship between n and the vertical velocity 

~ ( x ,  y ,  z )  = W(z)  (sech y)"* tanh y eia(z-ct) (21) 

may be determined from (4), (6) and (13). Correspondence between (20) and the 
Taylor-Goldstein equation, used by Hazel, can be established if a = 0 in the 
latter equation and if (1 - a2) J in (20)  is identified with J in the Taylor-Goldstein 
equation. Then, if J = J, sech2z and g(z) = tanhz are introduced in (20), Hazel's 
results imply that 

where a < 1. The neutral curve, defining the locus of singular neutral modes 
in J,, a space, is displayed in figure 2 .  The channel width is 2H, where H = 2.5. 
This value of H has been used in the present computations because Hazel has 

(1 - a2) J ,  = a2(H), (22) 
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FIGURE 2. Neutral curves for the four profiles in $3. (a) Case 1. (6) Case 2. (c) Case 3. 
(d )  Case 4. J = J,,sech2z. In each case H = 2-5 and c,  = 0. The dashed lines are asymptotes. 

determined the neutral eigenvalue J, = 0.249 for this separation. Essentially, 
higher or lower values of H will be associated with lower values of J,, as shown 
in figure 1. The eigenfunctions, which are not displayed, must be determined 
numerically. Instability characteristics of the profile U = tanh y tanh z are 
presented in 0 4. 

Case 2. U = tanh y sechz 
Although the instability of the flow g(z)  = sechz has apparently not been 
delineated, Miles (1963) has established that the stability boundary consists of 
singular neutral modes for which ci = 0 and U ( z )  = c, for some z in (zl, z2) .  Since cF 
is assumed zero and iil+ 0 in (zl, zz) ,  a stability boundary contiguous to unstable 
stationary modes is not possible. Consequently, the profile ;Ei; = tanh y sech z con- 
sists of a flow h = tanh y, individually unstable to stationary modes, and a flow 
g = sech z, which is individually stable to stationary modes. 

The neutral curve in J,, a space may be determined from (20). Upon introduc- 
tion of (1 7)  and g = sech z, we obtain 

W” - [p2  - 2 sech2 21 W = 0, (23) 

where p2= 1+(a2- l )Jo  2 0. (24) 

Equation (23) is the same as equation (11) in Howard’s (1965) paper. As shown 
by Howard, there is one positive eigenvalue ,u for each value of the separation H 
greater than the root Ho of H, tanh H, = 1 (Ho 2: 1.1997). There is also a discrete 
spectrum of imaginary eigenvalues p for any value of H .  These correspond, in 
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the present case, to stable gravity waves. The neutral curve appears in figure 2 .  
The corresponding eigenfunction has been given by Howard. 

Case 3. U = sech y tanhz 
The stability of the flow h(y)  = sechy has been considered by Blumen ( 1 9 7 1 ~ ) .  
This flow is not unstable to stationary disturbances, but admits a denumerable 
infinity of stable waves which are solutions to Legendre's equation. As a 
consequence, we again insert (18) into (16) and find that it is a neutral solution if 

y = l+(l+a2)8 (25) 

and p2= ( I + a 2 ) k [ J + ( l + a )  h]. (26) 

J, = a2[1- (1 +$-+I. (27) 

By repeating the analysis presented for case 1, we obtain 

This neutral curve is displayed in figure 2. 

Case 4. U = sech y sechz 
We know that h(y)  = sech y and g(z) = sech z are individually stable to stationary 
disturbances. A repetition of previous arguments yields 

J, = (1 -pZ) [I - (I  +a2) -h ] .  (28) 

Application of the semicircle theorem establishes t,hat ci = 0 when c, = 0. As a 
consequence, the eigenvalues along the curve in figure 2 are associated with stable 
solutions that are not contiguous to unstable stationary modes. 

4. Instability properties 
Eigenvalues 

A numerical algorithm, described in the appendix, has been used to determine 
some unstable eigenvalues from (9) with 6 = 0. Although (9) is not separable 
with ci + 0, estimates of the unstable eigenvalues in J,, a space are made by 
restricting attention to eigenvalues that are adjacent to the neutral curves and 
for which c, = 0 everywhere. Some obvious drawbacks of this approach are 
evident. First, unstable regions in which c, + 0 are not found. Second, we have 
not found a truly three-dimensional instability, for example, a destabilization of 
a profile U(y , z )  that would be expected to be stable on the basis of the usual 
inflexion-point and Richardson-number criteria applied to planar flows. Finally, 
only restricted parameter ranges may be explored because the present numerical 
scheme becomes unstable. Nonetheless, the present study does provide quantita- 
tive information on a class of geophysical flows not previously examined. 

Values of some of the unstable eigenvalues associated with the profile 
U = tanh y tanhz are summarized in figure 3 and table 1. Two interesting 
features emerge: instability is not cut off when J ,  > f and two unstable stationary 
modes (c,  = 0) occur for each unstable wavenumber a when J, < f. The first result 
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FIGURE 3. Summary of instability characteristics for U = tanhy tanhz, J = J,sech2z pnd 
stationary (c, = 0 )  long-wave disturbances. The relative growth rates OIC( are entered at 
the points where eigenvalues have been determined. The growth rates in the region 
Jo < 0.249 are associated with mode I; those for mode I1 are slightly smaller as shown in 
table 1. 

- 
\a 0.1 0.2 0.3 0.4 0.5 
JO\ 

2.0 0.848 0.738 - 0.35 
at  
1.0 0.837 0.719 - - - 
0.5 0.822 0.693 0.55 0.5 - 
0.15 (I) 0.186 0.647 
0.15 (11) 0.174 0.567) 
0.10 
0.05 (I) 0.74 
0.05 (11) 0.67 

0.837 0.697 0-577 0.470 0.375 
- 

- - 

- 
- 
- 
- 

0.204 

0.289 

0.367 

t 40 grid intervals. 

TABLE 1. Eigenvalues ci (c, = 0) .  Unless otherwise indicated, 8 grid intervals, M = N = 8, 
have been used in the y and z directions respectively in the determination of these values 

is expected because, in the limit as J,+ co, (9) reduces to the 7~ equation associated 
with homogeneous shear flow. Consequently, the instability occurring to the right 
of the neutral curve is essentially inflexion-point instability associated with 
tanh y. This conclusion is borne out by the calculated energy transformations. 

The occurrence of two values of ci > 0 for the same J, and a is possible because 
ci appears in the form of a cubic in (9) or (A 1) (see appendix). Yet, in view of the 
limited number of grid points used to represent the eigenfunctions ( M  = N = 8) 
there is a distinct possibility that one of the eigenvalues is spurious, introduced 
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a! = 0.1 - 
JLl Rl Rz 
2.0 948 0.448 
1.0 729 0.693 
0.5 342 1-148 
0.15 (I) 44.0 1.18 
0.15 (11) 29.8 2.61 

a! = 0.2 
7 r----7 

2120 103 0.215 478 
1052 68.3 0.366 186 

R3 R ,  Rz R, 

298 52.3 0.661 70.2 
37.4 50.3 2.08 24.2 
11.4 10.8 2.52 4.3 

TABLE 2. Normalized Reynolds stresses. R, = R,IR,, where R, and R, are 
given by equations (32) and (33) 

by the numerical scheme. The conjecture that both values are associated with 
eigenfunctions of (9) will be examined in conjunction with the energy trans- 
formations. 

Energy transformations 
The perturbation kinetic and potential energy equations associated with (2)-( 6) 
are 

gu2 + v2)t = ( - (uv;61, + uwu,)) + (we), (29) 

g(J-iez), = ( -we>, (30) 

where 

As a consequence of the long-wave approxiination (6 = 0) ,  (+w2)t does not appear 
in (29). In order to compare the energy transformations over a range ofparameter 
values we define the following normalized Reynolds stress terms: 

R, = < - uvu,y( - we>, R, = < - uu~uz>/( - we). (3% (33) 
The use of R, and R, circumvents the introduction of an arbitrary amplitude 
factor. Moreover, they also provide a convenient measure of the ratio of the 
rate at  which energy is taken out of the mean flow by the Reynolds stresses 
to the rate at  which perturbation kinetic energy is supplied to the available 
potential energy. Since the problem is linear, a closed energy cycle cannot be 
described. Consequently, only initial values (t  = 0 )  have been calculated. These 
are presented in table 2. 

The influence of inflexion-point instability, as indicated by the magnitude of 
R, = R,/R2, seems quite evident. The computed relationship between R, and J ,  
in 0.5 Q J, < 2.0 could be anticipated, in view of the limiting result R,+m as 
J,,-+m. The values of R, for J,, = 0.15 still reflect the relative importance of 
inflexion-point instability because in the parameter range under consideration 

a 2 ( Z - ~ ) 2  [ J - ~ T ~ ] ~  < 7 ~ ~ ~ ,  (34) 

where the derivatives are of order of magnitude unity in the unstable region. 
We did not anticipate the existence of a second mode of instability. However, 

the evidence suggests that neither of these modes is spurious. First, the shapes of 
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the computed eigenfunctions for mode I are similar to those computed for 
J, 2 0.5. This result, in conjunction with the computations of R,, suggests that 
mode I is a mode that would exist in the absence of a vertical shear flow in a stably 
stratified fluid. However, the acceptance of mode I1 as an eigenfunction of (9) 
cannot be made on the basis of this information alone. The more persuasive 
reasons for accepting the reality of mode I1 are that (i) the sign and magnitude 
of R2 indicate an energy transformation associated with unstable vertical shear 
and (ii) the magnitudes of R, associated with mode I1 are significantly less than 
the values computed for mode I and the trend is for R, to decrease with increasing 
a. This lat.ter result is in qualitative accord with the problem of planar vertical 
shear flow, which arises as a limiting case. Let 

h(y) = tanhc-ly, (35) 
where c is a non-dimensional parameter that characterizes the relative magnitude 
of the horizontal and vertical shear. Then (22) is replaced by 

Jo = a2[I - ( c o ~ ) ~ ] - ~ .  (36) 

As e+ 0,  Ihl+ I and Hazel’s neutral-stability result J, = u2 is recovered. In  this 
limiting process the neutral curve, in figure 3, becomes vertical. The instability is 
wholly confined to the region below J, = u2, in accord with the well-known condi- 
tion for stability, J, 2 f. The source of instability for larger values of J, is 
eliminated as the horizontal shear disappears. 

We now set c = 1 but permit the static stability to become infinite, to 
suppress vertical motion. Then, as J,+m (a2 finite), a - t l  from below. The 
instability of the homogeneous shear flow h ( y )  = tanh y is confined to 0 ,< a < 1.  
I n  view of the continuous dependence of the neutral-stability boundary on the 
model parameters, as limiting cases are approached, the primary source of insta- 
bility in parameter space is brought more clearly into focus. Yet the interesting 
aspect of mode I1 is that  it appears to represent a transition from essentially in- 
flexion-point instability to instability of a stratified shear flow, as a increases. 
I n  contrast, mode I could be expected to disappear a t  large a (J, < a). 

5. Remarks 
The numerical scheme employed here did not prove useful in the delineation 

of eigenvalues for the profiles of cases 2 and 3, discussed in 3 3. Eigenvalues for 
case 2, ii = tanh y sechz, could be determined only for a < 0.1 and Jo > 1 -p2. 
The results (not shown) are in agreement with similar computations made with 
ii = tanh y tanh z and, as a consequence, establish that inflexion-point instability 
occurs below the neutral curve in figure 2. This result is plausible, since (24) has 
the same form as (36) with a2 replaced by I -p2 ( > 0) .  Then the limiting case, 
inflexion-point instability, may be established in a similar manner. 

In order to recover the limiting case associated with Ti = sech y tanhz, we let 

h ( y )  = seche-ly, (37) 

(38) 

where h+ I as e+m. Then in place of (27) we have 
J, = a2[I - (1  + ( ~ a ) ~ ) - : ] .  
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J, -+ a2 as e -+ co (a = constant). If the unstable region is wholly contained above 
the neutral curve in parameter space, then it would appear that the horizontal 
shear flow exerts a stabilizing influence. However, this conclusion cannot be 
substantiated because, as shown by Blumen (1971 a) ,  the limiting case Jo = co 
exhibits inflexion-point instability with c, + 0 in the range 0 6 a < 1-465. 
Consequently, there is instability to the right of the neutral curve that has not 
been delineated. 

Many questions have been raised by the present study. Perhaps the most 
interesting speculation concerns general sufficient conditions for stability. 
Analysis has so far not yielded conditions that are independent of the perturba- 
tions themselves. However, for a two-layer model with a continuous profile U(y) 
in each layer, it  has been shown (Blumen 1973) that the sufficient conditions may 
be expressed by the Rayleigh-Fjartoft condition and a bound on the internal 
Froude number. The latter condition is akin to the requirement that Jo be greater 
than 0.5 or 1-0, depending on certain model characteristics. 

The numerical results, restricted to a relatively narrow region of parameter 
space, do not shed light on whether or not both J >  t and the inflexion-point 
criterion are sufficient for stability. This circumstance is not surprising, for 
Blumen (1971 c )  has shown that stability of a shear flow U ( y )  of a stratified fluid 
depends on the part,icular disturbance mode under investigation. However, when 
inflexion-point instability of G(y) does occur some of the available energy from 
the basic flow must be used to do work against buoyancy. Consequently, the 
disturbance growth rates are reduced in magnitude. Computations showing this 
latter effect, for an analogous physical situation, have been presented by Blumen 
(1970). 

The mutual effects of both horizontal and vertical shear are complex, 
depending on the particular velocity profile, stratification and modes chosen for 
study. Consequently, it  is not possible to state, in general, how the stability of 
a vertical shear flow will be affected by lateral spatial variations. Drazin ( 1  974) 
has reached a similar conclusion in his treatment of the vortex-sheet instability 
of flows with slow lateral variation. Some of the complexities involved in the 
present model are highlighted by the energy-transformation properties of the 
modes displayed in table 2. Nevertheless, information on the mutual effects of 
horizontal and vertical shear would be significant in studies of atmospheric and 
oceanic jet flows. In  the atmospheric case, for example, the value of e in (37) is 
generally of order 10 or greater. In  this situation, we might anticipate small-scale 
instabilities, such as clear-air turbulence (CAT), to be related to small J ,  < 4 
rather than inflexion-point instability. However, in those cases when CAT 
patches extend over many tens of kilometres, the horizontal shear may be 
significant. 

This research was supported by the Atmospheric Science Section of the 
National Science Foundation, under Grant GA-3 1868. Numerical programming 
was handled by Charles M. Rosenberg and the critical appraisal of the manu- 
script provided by Dr Philip G. Drazin was both welcome and helpful. 
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Appendix. Numerical procedures 
The unstable eigenvalues ci > 0 (c, = 0) have been determined in the following 

manner. Finite differences were used to reduce (9) to a system of homogeneous 
algebraic equations. Then ci was found by solving the characteristic determinant 
equation / A +  B(ci)l = 0, 

where A and B are both complex matrices. Miiller’s root-finding technique 
(Conte & deBoor 1972, p. 76) was employed to provide improved estimates of ci 
once three distinct approximations to a root of (A 1 )  had been specified for a 
particular choice of a, J, and profile U(y,  z) .  This method, a relatively standard 
approach, has been recommended for use when reliable initial estimates are 
available (e.g. Frank 1958; Gersting & Jankowski 1972). Since it is possible to 
provide good initial estimates of ci, as discussed in 3 4, the root finder behaved 
in a stable manner when used with determinants as large as order 99. 

A standard two-point central differencing procedure was used to represent 
derivatives. However, in view of the fact that  the y region is infinite in all the 
cases examined, the transformation 

(A 1) 

Y = sin-l (tanh y)/&r, I YI < 1, (A 2) 

was introduced. In  addition to making the region of integration finite, equal 
increments AY provide greater resolution in the vicinity of the origin than in 
the tails. This property is highly advantageous because the eigenfunctions in 
the present class of problems exhibit their greatest variation near y = Y = 0. 

The accuracy of the algorithm used to solve (A if was established by com- 
parison with a test result. Agreement to eight significant figures was attained. 
Further tests were made to determine the accuracy as a function of the number 
of grid elements: M along the Y axis and N along the z axis. These tests were 
made by solving the limiting problems of planar shear flow separately using 
40 grid elements in each direction. I n  each case agreement with Michalke’s (1964) 
and Hazel’s (1969) computations was essentially attained. Reduction to 10 and 
8 grid elements in each direction established that the unstable eigenvalues could 
be determined to within an accuracy of better than 10 yo when a < 0.2 and 
J, < 2. However, numerical instabilities led to additional inaccuracies when 
a: > 0.2. Consequently, the values of ci displayed in table 1 (a > 0.2) are less 
reliable but the trend of changes in c i (a )  is evidently correct. 

REFERENCES 

BLUMEN, W. 1970 Shear layer instability of an inviscid compressible fluid. J .  Fluid Meck. 

BLUMEN, W. 1971a Jet  flow instability of an inviscid compressible fluid. J .  Fluid Mech. 
46, 737-747. 

BLUMEN, W. 1971 b Hydrostatic neutral waves in a parallel shear flow of a stratified fluid. 
J .  Atmqs. Sci. 28, 340-344. 

BLUMEN, W. 1971c On the stability of plane flow with horizontal shear to three 
dimensional disturbances. Beophys. Fluid Dyn. 2 ,  189-200. 

40, 769-781. 



Stability of shear $ow of a stratijied Jluid 189 

BLUMEN, W. 1973 Stability of a two-layer fluid model to nongeostrophic disturbances. 

CONTE, S. D. & DEBOOR, C. 1972 Elementary Numerical Analysis; an Algorithmic Approach. 

DRAZIN, P. G. 1974 Kelvin-Helmholtz instability of a slowly varying flow. J .  Fluid Mech. 

DRAZIN, P. G. & HOWARD, L. N. 1966 Hydrodynamic stability of parallel flow of inviscid 
fluid. Adv. in Appl. Mech. 9, 1-89. 

FRANK, W. 1958 Computing eigenvalucs of complex matrices by determinant evaluation 
and by methods of Danilewski and Wielandt. J .  SOC. Indust. Appl. Math. 6, 378-392. 

GERSTING, J. M. & JANKOWSKI, D. F. 1972 Numerical methods for Orr-Sommerfeld 
problems. Int. J .  Numer. Methods Engng, 4, 195-206. 

HAZEL, P. 1969 Numerical studies of stratified shear flows. Ph.D. thesis, University of 
Cambridge. 

HAZEL, P. 1972 Numerical studies of the stability of inviscid stratified shear flows. 

HOWARD, L. N. 1961 Note on a paper by John W. Miles. J .  Fluid Mech. 10, 509-512. 
HOWARD, L. N. 1965 The number of unstable modes in hydrodynamic stability problems. 

MICHALKE, A. 1964 On the inviscid instability of the hyperbolic-tangent velocity profile. 

MILES, J. W. 1963 On the stability of heterogeneous shear flows. Part 2 .  J .  Fluid Mech. 

PEDLOSKY, J. 1964a The stability of currents in the atmosphere and the ocean. Part I. 

PEDLOSKY, J. 19646 The stability of currents in the atmosphere and the ocean. Part 11. 

Tellus, 25, 12-19. 

McGraw-Hill. 

65, 781-797. 

J .  Fluid Mcch. 51, 39-61, 

J .  Mdcanique, 3, 433-443. 

J .  Fluid Mech. 19, 543-556. 

16, 209-227. 

J .  Atmos. X C ~ .  21, 201-219. 

J .  Atmos. Sci.  21, 342-353. 


